This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713617200

A Facile Synthesis of 1,2-Anhydro-6-O-acetyl-3,4-di-O-benzyl-dglycopyranoses and 1,2-Anhydro-5-O-acetyl-3-O-benzyl-D-glycofuranoses Jun Ning ${ }^{\text {ab }}$; Fanzuo Kong ${ }^{\text {a }}$
${ }^{\text {a }}$ Research Center for Eco-Environmental Sciences, Academia Sinica, Beijing, P. R. China

To cite this Article Ning, Jun and Kong, Fanzuo(1998) 'A Facile Synthesis of 1,2-Anhydro-6-O-acetyl-3,4-di-O-benzyl-dglycopyranoses and 1,2-Anhydro-5-O-acetyl-3-O-benzyl-D-glycofuranoses', Journal of Carbohydrate Chemistry, 17: 6, 993-997
To link to this Article: DOI: 10.1080/07328309808007470
URL: http://dx.doi.org/10.1080/07328309808007470

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


A FACILE SYNTHESIS OF 1,2-ANHYDRO-6-O-ACETYL-3,4-DI-O-BENZYL-D-GLYCOPYRANOSES AND 1,2-ANHYDRO-5-O-ACETYL 3-O-BENZYL-D-GLYCOFURANOSES

Jun Ning and Fanzuo Kong*
Research Center for Eco-Environmental Sciences, Academia Sinica, P.O.Box 2871, Beijing 100085, P. R. China

Received October 8, 1997 - Final Form March 18, 1998

The ability to couple carbohydrate entities to produce glycosides or higher oligomers is an important goal of synthetic organic chemistry. ${ }^{1}$ For the past several decades, methods to construct glycosidic linkages have improved as a result of the development of glycosidation procedures. ${ }^{2}$ However, owing to their structural complexity, synthesis of oligosaccharides is still a laborious task compared with the synthesis of oligopeptides and oligonucleotides. Many additional sugar derivatives which can improve and simplify synthetic procedures of oligosaccharides are needed.

1,2-Anhydrosugar derivatives, as intermediates for the synthesis of oligosaccharides, have received considerable attention recently because of their excellent reactivity and stereoselectivity, ${ }^{3,4}$ and many natural and unusual oligosaccharides have been synthesized from them. ${ }^{3,4}$ Studies concerned with the preparation of 1,2-anhydrosugars were reported by Danishefsky's group ${ }^{3}$ using direct epoxidation of the glycals. It is, however, difficult to prepare 1,2-anhydrosugars having a cis arrangement of the 3-hydroxy group and the epoxide ring by this method, and large scale preparations are inconvenient. Another approach to synthesis of 1,2-anhydro sugars is intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction, as

Scheme: (a) catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{3} \mathrm{OH}$, reflux, $3 \mathrm{~h}, 98 \%(2), 97 \%(9), 98 \%(16)$, 98\% (23). (b) TsCl, pyridine, $50^{\circ} \mathrm{C}, 20 \mathrm{~h}, 98 \%$ (3), 98% (10), 97% (17), 98% (24). (c) $\mathrm{HOAc} / \mathrm{Ac}_{2} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}=7 / 1 / 0.6$ (v), rt, $16 \mathrm{~h}, 97 \%$ (4), 96% (11), 96% (18), 96% (25). (d) anhydrous ether saturated with dry ammonia, rt, $24 \mathrm{~h}, 97 \%$ (5), 97% (12), 96% (19), 97% (26). (e) NaH (1.1equiv.), THF, rt, $20 \mathrm{~min}, 95 \%$ (6), 94% (13), 92% (20), 94% (27). (f) anhydrous $\mathrm{MeOH}, \mathrm{rt}, \mathrm{l} \mathrm{h}, 100 \%(7,14,21,28)$. (g) 1,2-O-isopropylidene-3-O-benzyl- α -D-xylofuranose, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{ZnCl}_{2}, \mathrm{rt}, 4 \mathrm{~h}, 84 \%$ (29). (h) diacetone galactopyranose, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ZnCl_{2}, rt, $4 \mathrm{~h}, 83 \%$ (30).
initiated by Schuerch's group. ${ }^{\text {s }}$ As part of a continuous effort dedicated to the synthesis of 1,2-anhydro sugars by this latter method, a number of 1,2-anhydrosugar benzyl ethers have been synthesized in our laboratory. ${ }^{4}$ However, in the stepwise synthesis of oligosaccharides, the preparation of sugar derivatives containing both persistent and temporary blocking groups is required. In the work described herein, we contribute a facile and general method for the synthesis of 1,2-anhydro-6-O-acetyl-3,4-di-O-benzylglycopyranoses and 1,2-anhydro-5-O-acetyl-3-O-benzylglycofuranoses being capable of building 2,6- (and 2,5-) homo- or hetero- substituted oligasaccharides.

The synthetic route is depicted in the Scheme. Tosylation of 2, 9, 16, and 23, which were obtained by methanolysis of $\mathbf{1}, \mathbf{8}, \mathbf{1 5}$, and 22 , respectively, afforded the corresponding methyl-2-sulfonate glycosides $\mathbf{3}, 10,17$, and 24 . Selective acetolysis of $\mathbf{3}, 10$, 17 , and 24 using $\mathrm{HOAc} / \mathrm{Ac}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{SO}_{4}$ gave the corresponding diacetates $4,11,18$, and 25 . It was found that selective removal of the 1-O-acetyl group of the diacetates by known methods such as using $\mathrm{SnCl}_{4}{ }^{6}$ or $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{HOAc}^{7}$ suffered from low yields and tedious separation. However the 1-O-acetyl group was very successfully removed under the conditions designated for selective removal of 2-O-trichloroacetyl ${ }^{8}$ of 3,4,6-tri- O-acetyl-2-O-trichloroacetyl- β-D-glucopyranosyl chloride. Thus the key intermediates 5,12,19, and 26 were quantitatively obtained from treatment of the corresponding $4,11,18$, and 25 in anhydrous ether saturated with dry ammonia. ${ }^{8}$ Since all of the above applied reactions gave very high yields, the intermediates involved in the procedure could be subjected to the next reaction without chromatographic separation. We were gratified to find that ring closure of $5,12,19$, and 26 with NaH in THF gave the 1,2-anhydro-6-O-acetyl-di- O-benzyl- α-Dglucopyranose (20), 1,2-anhydro-6-O-acetyl-di- O-benzyl- β-D-talopyranose (27), 1,2-anhydro-5- O-acetyl-3-O-benzyl- α-D-ribofuranose (6), and 1,2-anhydro-5- O-acetyl-3- O -benzyl- β-D-lyxofuranose (13), respectively, in almost quantitative yields. Acetyl groups were not affected under the designated alkaline conditions. The anhydro sugars 6, 13, 20, and 27 were identified from their ${ }^{1} \mathrm{H}$ NMR spectra showing upfield peaks from $\mathrm{H}-2$ at δ $3.57,3.60,3.06$, and 3.50 ppm , respectively, a salient feature of the epoxide ring. Methanolysis of $6,13,20$, and 27 quantitatively gave the corresponding 1,2-trans methyl glycosides $7,14,21$, and 28, confirming the anhydrosugar structures. Condensation of 13 with 1,2-O-isopropylidene-3-O-benzyl- α-D-xylofuranose using ZnCl_{2} as the catalyst in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded an α-linked disaccharide 29 (1,2-trans) as the sole product in a high yield, while condensation of 20 with 1,2:3,4-di- O-isopropylidene- α-D-galactopyranose afforded a β-linked disaccharide $\mathbf{3 0}$ (1,2-trans) as the sole product in a satisfactory yield. It is noted that 6-O-acetyl in $\mathbf{2 0}$ did not influence the stereoselectivity of the ring opening coupling of 20 although it is known that replacement of $6-O$-benzyl with $6-O$-acetyl altered the stereoselectivity of the coupling reaction of benzylated galactopyranosyl phosphite from 1,2-trans to predominant 1,2 -cis. ${ }^{9}$ Compounds 29 or $\mathbf{3 0}$ having a free $2-\mathrm{OH}$ group and a potential $5-\mathrm{OH}$ or $6-\mathrm{OH}$ group ${ }^{10}$ can be used for further selective functionalization or glycosylation at the $\mathrm{C}-2$ and $\mathrm{C}-5$ or $\mathrm{C}-6$ positions.

In summary, we have successfully developed a highly efficient procedure for the synthesis of 6-O-acetyl-1,2-anhydro-3,4-di- O-benzylglycopyranoses and 5-O-acetyl-1,2-anhydro-3- O-benzylglycofuranoses which are important intermediates for the construction of complex carbohydrates.

ACKNOWLEDGEMENT

Project 29672049 was supported by The National Natural Science Foundation of China.

REFERENCES AND NOTES

1. R. R. Schmidt, Angew. Chem. Int. Ed. Engl., 25, 212 (1986).
2. F. Barresi and O. Hindsgaul, J. Carbohydr. Chem., 14 (3), 1043 (1995).
3. a) T. K. Park, I. J. Kim, S. Hu, M. T. Bilodeau, J. T. Randolph, O. Kwon, and S. J. Danishefsky, J. Am. Chem. Soc., 118, 11488 (1996).
b) J. T. Randolph and S. J. Danishefsky, J. Am. Chem. Soc., 117, 5693 (1995).
c) M. T. Bilodeau, T. K. Park, S. Hu, J. T. Randolph, S. J. Danishefsky, P. O. Livingston, and S. Zhang, J. Am. Chem. Soc., 117, 7840 (1995).
d) S. J. Danishefsky, J. Gervay, J. M. Peterson, F. E. McDonald, K. Koseki, D.
A. Griffith, T. Oriyama, and S. P. Marsden, J. Am. Chem. Soc., 117, 1940 (1995).
e) S. J. Danishefsky, K. F. McClure, J. T. Randolph, and R. B. Rugger, Science, 260, 1307 (1993).
4. a) J. Ning and F. Kong, J. Carbohydr. Chem., 16, 311 (1997).
b) J. Ning and F. Kong, Carbohydr. Res., 300, 355 (1997)
c) Y. Du and F. Kong, Tetrahedron Lett., 3, 427 (1995).
d) G. Yang, and F. Kong, J. Carbohydr. Chem., 13, 909 (1994).
e) G. Yang, F. Kong, and R. R. Fraser, Carbohydr. Res., 258, 49 (1994).
f) Y. Du and F. Kong, J. Carbohydr. Chem., 14, 341 (1995).
5.

a) S. J. Sondheimer, H. Yamaguchi, and C. Schuerch, Carbohydr. Res., 74, 327 (1979).

b) H. Yamaguchi and C. Schuerch, Carbohydr. Res., 81, 192 (1980).
6. A. Banaszek, X. B. Cornet, and A. Zamojski, Carbohydr. Res., 144, 342 (1985).
7. Z. Jiang and R. R. Schmidt, Liebigs Ann. Chem., 645 (1994).
8. R. U. Lemieux and J. Howard, Methods Carbohydr. Chem. II, 400 (1963).
9. C. Lin, M. Shimazaki, M. Heck, S. Aoki, R. Wang, T. Kimura, H. Ritzen, S. Takayama, S. Wu, G. W. Schmidt and C. H. Wong, J. Am. Chem. Soc., 118 , 6826 (1996).
10. All new compounds were purified and characterized by ${ }^{1} \mathrm{H}$ NMR, elemental analysis, and optical rotation. Selected ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$ as internal standard) data are as follows: 11. α, β mixture (2:1): 7.80 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{Ph}-H$ of Ts), (d, $0.67 \mathrm{H}, \mathrm{H}-1$ of α anomer), $5.99(\mathrm{~s}, 0.33 \mathrm{H}, \mathrm{H}-1$ of β anomer), $5.01(\mathrm{~d}$, $0.33 \mathrm{H}, \mathrm{H}-2$ of β anomer), $4.95(\mathrm{t}, 0.67 \mathrm{H}, \mathrm{H}-2$ of α anomer), $4.70-4.10$ (m, $4 \mathrm{H}, \mathrm{H}-3,4,5,5$ '), $2.45\left(\mathrm{~s}, 3 \times 0.33 \mathrm{H}, \mathrm{PhCH} H_{3}\right.$ of β anomer), 2.42 (s , $3 \times 0.67 \mathrm{H}, \mathrm{PhCH}$ of α anomer), $\left.2.03-2.00(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{COCH})_{3}\right)$. 12. α, β mixture (1:3): $7.82(\mathrm{~d}, 2 \times 0.25 \mathrm{H}, \mathrm{Ph}-H$ of Ts of α anomer), $7.80(\mathrm{~d}, 2 \times 0.75 \mathrm{H}$, $\mathrm{Ph}-H$ of Ts of β anomer), 5.46 (d, $0.25 \mathrm{H}, \mathrm{H}-1$ of α anomer), 5.15 (s, 0.75 H , $\mathrm{H}-1$ of β anomer $), \quad 4.80(\mathrm{~s}, 0.75 \mathrm{H}, \mathrm{H}-2$ of β anomer $), 4.71(\mathrm{t}, 0.25 \mathrm{H}, \mathrm{H}-2$ of α anomer), 4.40-4.15 (m, 4H, H-3, 4, 5, 5'), 2.46 (s, $3 \times 0.75 \mathrm{H}, \mathrm{PhCH}_{3}$ of β anomer), $2.42\left(\mathrm{~s}, 3 \times 0.25 \mathrm{H}, \mathrm{PhCH}_{3}\right.$ of α anomer), $2.03\left(\mathrm{~s}, 3 \times 0.75 \mathrm{H}, \mathrm{COCH}_{3}\right.$ of β anomer), 2.00 (s, $3 \times 0.25 \mathrm{H}, \mathrm{COCH}_{3}$ of α anomer). 13. 5.16 (d, $1 \mathrm{H}, \mathrm{H}-1$), 4.58-4.35 (m, 3H, H-3, 5, 5'), 4.10 (m, 1H, H-4), $3.60(\mathrm{t}, \mathrm{H}-2), 2.08(\mathrm{~s}, 3 \mathrm{H}$, COCH_{3}). 14. 4.90 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), 4.48-4.30 (m, 3H, H-3, 5, 5'), 4.19 (m, 1H, H-4), 4.07 (d, $\mathrm{lH}, \mathrm{H}-2$), $3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$. 18. Only α isomer: 7.85 (d, 2H, Ph-H of Ts), 6.04 (d, 1H, H-1), 4.84 (t, 1H, H-2), 4.30 (dd, 1H, H-6), 4.21 (dd, 1H, H-6'), 3.96-3.72 (m, 3H, H-3, 4, 5), 2.40 (s, 3H, PhCH ${ }_{3}$), 2.05, 2.02 ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COCH}_{3}$). 19. Only α isomer: 7.83 (d, $2 \mathrm{H}, \mathrm{Ph}-H$ of Ts), 5.34 (d, $1 \mathrm{H}, \mathrm{H}-1$), 4.81 (t, 1H, H-2), 4.37 (dd, 1H, H-3), 4.14 (dd, 1H, H-6), 3.98 (dd, 1H, H-6), 3.97 (m, lH, H-5), 3.72 (t, 1H, H-1), 2.90 (ds, 1H, OH), 2.38 (s, 3H, PhCH_{3}), 2.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}$). 20. 4.95 (d, $1 \mathrm{H}, \mathrm{H}-1$), 4.33 (dd, $1 \mathrm{H}, \mathrm{H}-6$). 4.24 (dd, $1 \mathrm{H}, \mathrm{H}-6$), 4.01 (dd, 1H, H-3), 3.81 (ddd, 1H, H-5), 3.51 (dd, 1H, H-4), 3.06 (dd, 1H, H-2), 2.03 (s, $3 \mathrm{H}, \mathrm{COCH}_{3}$). 21. $4.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-2$), 4.36 (dd, $1 \mathrm{H}, \mathrm{H}-6$), 4.23 (dd, $1 \mathrm{H}, \mathrm{H}-$ 6^{\prime}), $4.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1), 3.71-3.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3,4,5), 3.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.05,1.98$ ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COCH}_{3}$). 29. 5.91 (d, 1H, H-1), 4.98 (s, $1 \mathrm{H}, \mathrm{H}-1$ '), 4.38-4.26 (m, 4H, H-3', 4, 5a, 5b), 4.17 (m, 1H, H-4'), 4.06 (d, 1H, H-2'), 3.94-3.68 (m, 3H, H-3, 5'a, 5 'b), 2.64 (bs, $1 \mathrm{H}, \mathrm{OH}$), $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.52,1.31\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CCH}_{3}\right) .30$. 5.50 (d, 1H, H-1), 4.61 (dd, 1H, H-3), 4.33 (dd, $1 \mathrm{H}, \mathrm{H}-2$), 4.25 (d, $1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}$), 4.22 (dd, $1 \mathrm{H}, \mathrm{H}-4$), 4.07 (dd, $1 \mathrm{H}, \mathrm{H}-2$), 4.01 (m, 1H, H-5), 3.74 (dd, 1H, H-3'), 3.65 (m, 1H, H-5'), 3.60 (dd, 1H, H-4'), 2.02 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$).

